
Chapter 1

What’s the problem?

I’ll pick a number between one and two,
And I’ll ask myself, “What would Julius Caesar do?”

Bob Dylan

Math kook

I once read a book about a regular person, by which I mean they didn’t own a
surfboard or know how to surf. Yet they gave themselves a goal: within one year,
they would get barreled. That’s when a giant wave breaks above your head, and
you shoot gracefully through a rolling tube of water. Also known as getting pitted,
slotted, tubed, or kegged.

This regular person was what surfers call a kook, a novice, and … kooks don’t
get barreled. They get slammed and concussed, and they are constantly in the way,
but they don’t get barreled. So, I really respected that author for setting such an
awesome goal. I can’t remember how the book ends. Maybe they did it! At least
they got a deep understanding of the power and chaos of the ocean, and finally, they
were no longer a kook.

This is not a book about surfing. It’s about math. Two years ago, I was a
math kook. I took high-school math, but I never took calculus or number theory in
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college. I liked computers, so I went on to study computer science, but math was
always a weak spot for me.

So, being a kook, I naturally decided to tackle one of the most notorious un-
solved problems in mathematics, one that has confounded the world’s best mathe-
maticians for decades.

The 3n+1 problem

Here’s the problem:

Take any number.
If it’s odd, multiply it by 3 and add 1.

If it’s even, divide it by 2.
Then repeat.

For example, let’s start with 7. It’s odd, so the next number is 22, which is even,
and so on:

7 - 22 - 11 - 34 - 17 - 52 - 26 - 13 - 40 - 20 - 10 - 5 - 16 - 8 - 4 - 2 - 1

The numbers kind of bounce up and down. Or start with 84:

84 - 42 - 21 - 64 - 32 - 16 - 8 - 4 - 2 - 1

How can this be one of the most notorious unsolved problems in mathemat-
ics? Despite a great deal of effort, the world’s mathematicians have been unable to
resolve the 3n+1 conjecture:

The 3n+1 Conjecture. All numbers eventually reach 1.

Every number that’s ever been tried ends up at 1. Like this one:

1438 - 719 - 2158 - 1079 - 3238 - 1619 - 4858 - 2429 - 7288 - 3644 - 1822
- 911 - 2734 - 1367 - 4102 - 2051 - 6154 - 3077 - 9232 - 4616 - 2308 -
1154 - 577 - 1732 - 866 - 433 - 1300 - 650 - 325 - 976 - 488 - 244 - 122 -
61 - 184 - 92 - 46 - 23 - 70 - 35 - 106 - 53 - 160 - 80 - 40 - 20 - 10 - 5 - 16

- 8 - 4 - 2 - 1

Each number takes its own winding, random-looking path. When I say the
numbers kind of bounce up and down, that’s an understatement. How they bounce
around is, as Winston Churchill once described Russia, a riddle wrapped in a mys-
tery inside an enigma.
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Speaking of Russia

At the height of the Cold War, Soviet government scientists devised the 3n+1 con-
jecture as a fiendishly difficult mathematical puzzle. Using a coded one-time pad,
they sent the conjecture to Franz-Josef Vogler, an assistant professor in Yale Univer-
sity’s math department, and a KGB plant. Professor Vogler casually described the
problem to his colleagues in the faculty lounge, and they were instantly entranced.

Working feverishly throughout the day, the professors filled up several black-
boards. They forgot to eat their packed lunches. Fresh coffee was brought in. It
went on like this for weeks. During that time, renowned Stanford topologist Evin
Wilson was invited to present his research in Yale’s Distinguished Lecture series.
A few days later, Wilson carried the 3n+1 puzzle back to the West Coast, where
UCLA professor Miles Kovic heard about it. Kovic added it to his plenary talk at
the Annual Symposium on Number Theory inMadrid, Spain. Within a fewmonths,
Western mathematical research had ground to a halt. No one worked on anything
except the intractable 3n+1 problem.

Actual history of the 3n+1 problem

It’s an apocryphal story! But based on actual jokes made by frustrated Yale faculty.
The real origin of the 3n+1 problem is less clear. Mathematicians discussed

problems like 3n+1 at meetings from the 1930s to the 1960s, but since these prob-
lems proved difficult to solve, no one published anything. Credit for the 3n+1
conjecture is usually given to German mathematician Lothar Collatz (1910-1990),
who wrote in his notebook on July 1, 1932:

g(n) = 2n / 3 if n ≡ 0 (mod 3)
(4n – 1) / 3 if n ≡ 1 (mod 3)
(4n + 1) / 3 if n ≡ 2 (mod 3)

This is the original Collatz problem, and it’s a variation of the 3n+1 problem
with three conditions instead of two. We’ll come back to it in Chapter 13. Collatz
played with such problems and circulated them at math conferences. Because of his
work, the 3n+1 problem is usually referred to as the Collatz conjecture. It’s also
known as the “Ulam conjecture,” “Kakutani’s problem,” the “Syracuse problem,”
and the “3x+1 problem.”

What would a solution look like?

The 3n+1 conjecture posits that all numbers eventually reach 1. There are three
ways you could resolve the conjecture.

First, you could find a concrete counter-example that proves the conjecture
false. For example, you could discover a number that cycles back on itself, looping
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forever, never reaching 1. If you found such a number, you could publish your
results as one of the shortest papers in mathematical history:

The 3n+1 problem has a cycle
by You

The number
23,948,732,663,490,720,393,736,942,873,965,298,579,834,019

loops back on itself after 19,439,298,097 steps
of the 3n+1 procedure.

Or, you could find a number that diverges to infinity, always reaching greater
and greater heights. Now, this would be harder for us to confirm. How would we
know it doesn’t eventually come down? You’d need to provide an airtight argument.
(Chapter 4 gives an example of such an argument.)

Finally, you could prove that the 3n+1 conjecture is true. You’d need an airtight
argument here, too. It’s not enough to say, “I tried a few thousand numbers, and
they all reached 1, so… yeah.”

What does an airtight argument look like, generally speaking?
Let’s start with a simpler conjecture:

Every even number can be written as the sum of two odd numbers.

It’s easy to generate examples like 18 = 11+7 or 32 = 29+3, but that doesn’t
prove the conjecture holds for every even number. An airtight proof might go like
this: “Take any even number n. Clearly, n = (n – 1) + 1. Since n – 1 is adjacent to
an even number, it’s odd. So is 1. So, we’ve written any even number n as the sum
of two odd numbers: (n – 1) and 1.”

Editor: Can you please remove the formula? Each formula in a
popular-science book reduces sales by half.
Author: What? It’s just plus, minus, and equals!
Editor: Kevin, this is an ironclad principle of publishing. You might as
well be lighting hundred-dollar bills on fire.
Author: Wait, we’re making hundreds of dollars?!

Of course, this proof is only airtight if we all agree that odd numbers are adjacent
to even numbers. And we also have to agree on what an odd number is, in the first
place. A more formal proof would look like this:

1. A number n is even if n = 2m for some whole number m.
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2. A number n is odd if n = 2m – 1 for some positive whole number m.

3. Take any even number n = 2m.

4. Then, n = 2m – 1 + 1 = (2m – 1) + (2 – 1) = (2m – 1) + (2 · 1 – 1).

5. So, n is the sum of two numbers, each of the form 2m – 1… that is, two odd
numbers.

That seems detailed enough. But, how dowe even know that it’s okay to replace
2 with (2 · 1) in step 4? Well, in the early 20th century, English mathematicians
Bertrand Russell and Alfred North Whitehead tried to clear everything up once and
for all. They wrote a foundational three-volume series called Principia Mathemat-
ica. After carefully defining addition, multiplication, the number zero, and many
other things, they managed to prove that 1 + 1 = 2, on page 86 … of the second
volume!

Bertrand Russell was a philosopher who wrote extensively on logic, mathe-
matics, war, politics, and free thought. While imprisoned for pacifist speeches, he
wrote a book called Introduction to Mathematical Philosophy. My father had yet
another Bertrand Russell book on his bookshelf when I was growing up, calledWhy
I am Not a Christian. I didn’t read that book, but I remember staring at the spine
for a long time in amazement, and I particularly remember that the word “Not” was
printed in a different color from the other words. Russell didn’t get the Nobel Prize
in mathematics—there’s no such thing—but he got the Nobel Prize for Literature
in 1950. “I wish I could switch places with Bertrand Russell for a day,” my college
roommate used to say. “Even though he’s dead.”

Counter-examples

Finding a counter-example to the 3n+1 conjecture sounds easier than devising an
airtight proof. In searching for counter-examples, computer programmers have al-
ready checked the first billion-billion numbers, and every one of them eventually
reaches 1. Here’s a start number I picked randomly just now:

28,828,795,202,195,990,691 - 86,486,385,606,587,972,074 -
43,243,192,803,293,986,037 - 129,729,578,409,881,958,112 -
64,864,789,204,940,979,056 - 32,432,394,602,470,489,528 -
16,216,197,301,235,244,764 - 8,108,098,650,617,622,382 -

…
- 638 - 319 - 958 - 479 - 1438 - 719 - 2158 - 1079 - 3238 - 1619 - 4858 -
2429 - 7288 - 3644 - 1822 - 911 - 2734 - 1367 - 4102 - 2051 - 6154 - 3077
- 9232 - 4616 - 2308 - 1154 - 577 - 1732 - 866 - 433 - 1300 - 650 - 325 -
976 - 488 - 244 - 122 - 61 - 184 - 92 - 46 - 23 - 70 - 35 - 106 - 53 - 160 -

80 - 40 - 20 - 10 - 5 - 16 - 8 - 4 - 2 - 1
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Sure enough, after 494 steps, it also reaches 1. But in the cosmic scheme of
things, 28,828,795,202,195,990,691 is still a tiny number. Mind-blowing fact:

Almost all positive whole numbers are bigger than
28,828,795,202,195,990,691.

So, is there any hope of finding a 3n+1 counter-example?

An inspiring precedent

In 1951, British mathematician Louis Mordell considered this equation:

x3 + y3 + z3 = 3

If you get the feeling something weird might be lurking behind this innocent
equation, then congratulations, you’re already edging out of math-kook territory.
(By the way, x3 means x · x · x. The dot means multiplication. Normally, I’d write
multiplication with an x, as in 2 x 2 = 4, but then we’d have too many x’s in a row.)

Louis Mordell knew of two solutions:

13 + 13 + 13 = 3
43 + 43 + (–5)3 = 3

We can verify the second solution like this:

(4 · 4 · 4) + (4 · 4 · 4) + (–5 · –5 · –5) = 64 + 64 – 125 = 3

Mordell searched for other solutions, but he couldn’t find any. He therefore had
a natural conjecture on his hands:

Mordell’s conjecture:
The equation x3 + y3 + z3 = 3 only has two integer solutions.

Mathematicians and computer scientists tried millions of values for x, y, and z
and came up with nothing. So that was that … until 2019, when Andrew Booker
and Andrew Sutherland found another solution:

569, 936, 821, 221, 962, 380, 7203 +
(–569, 936, 821, 113, 563, 493, 509)3 +
(–472, 715, 493, 453, 327, 032)3 = 3

Whoa! Themoral of this story? A huge counter-example to the 3n+1 conjecture
might exist. But to find it, we need to know where to look.
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Math for this book

The 3n+1 problem has been called “the simplest math problem that no one can
solve.” To understand it, you only need to know how to add, multiply, and divide
whole numbers. Ideally, a proof of the 3n+1 conjecture would stick to these basic
operations. But it’s sometimes useful to invoke fractions or even logarithms when
we analyze the 3n+1 problem. In this book, I’ll assume some 10th-grade math, but
no calculus.

Why do people care?

Why do people care about the 3n+1 conjecture? Surfers claim there’s cosmic signif-
icance to slotting into a rolling tube ofwater while standing on a slab of polyurethane.
Some say the 3n+1 problem is of similar deep consequence.

There’s also the prize money. In 1970, Canadian academic Harold Scott Mac-
Donald Coxeter offered $50 to whoever could solve the 3n+1 problem. That may
not excite you. But in 2021, Bakuage Co., Ltd., of Tokyo, significantly upped the
ante to 120 million Japanese yen (about $1,000,000) for “whoever has elucidated
the truth of the Collatz conjecture.” That’s a lot of cash, and now it’s easier to
explain to my brother-in-law what the heck I’m doing.

Bakuage Co., Ltd. has posted detailed rules on its website. If you read them
carefully, you can learn some interesting things. For example, the company reserves
the right to withhold the prize money from any “member of an organized crime
group,” or “a person for whom five (5) years have not yet passed since leaving an
organized crime group.” World-class gangster mathematicians? There’s a movie
plot in there.

Best be quick, though. When German doctor Paul Wolfskehl died in 1906, he
left behind 100,000 marks to the first person to solve the famous Fermat’s Last
Theorem. It was a huge prize, more than 100 times the average annual wage. But
after the German hyperinflation of the 1920s, 100,000 marks couldn’t buy a loaf of
bread.

What are the implications?

The stock market often resembles 3n+1 sequences. While writing this book, I held
a real-life stock that opened at $14 a share, landed on 16, then promptly went to
8, 4, 2, and 1. I doubt solving the 3n+1 conjecture will help anyone predict stock
prices, but who knows? Some of the richest people in the world are mathematicians
and physicists who apply math to finance.

Does the 3n+1 have military implications? Probably not. In 1940, English
mathematician G. H. Hardy bragged, “No one has yet discovered any warlike pur-
pose to be served by the theory of numbers… and it seems unlikely that anyone will
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do so for many years.” However, soon afterwards, mathematicians did develop se-
cure military cryptography around the discrete log problem, which we’ll look at in
Chapter 6.

What other applications does number theory have? I recently attended a math-
ematics conference, where each speaker presented their work to an auditorium of
professional colleagues. I couldn’t understand any of it. After a while, I realized
that nobody else in the audience did either. Each talk was so esoteric that only a
couple of audience members, steeped in the relevant sub-field, could understand it.

The real reason for the academic conference was the coffee breaks. “Oh,” Pro-
fessor Erickson might say to Professor Rodriguez, “Yamazaki has a theorem that
might be what you need.” Rodriguez would then hunt down Yamazaki at the snack
table.

During one talk, the speaker announced, “Now, I will describe some applica-
tions of my main theorem.” I sat upright. Finally! The speaker then described how
her theorem made it easy to prove other theorems … which she illustrated with
several examples. At that moment, I was disappointed, yet illuminated. If a math-
ematician says there are a lot of applications for their work, this is probably what
they mean.

Old math joke:
What do you call a person who reads a journal article on Tarskian
geometry? A co-author.

So, what’s the point?

When mathematicians look at a famous classic theorem or a surprising new result,
they don’t use words like “proficient” or “applicable.” Instead, they say “stunning”
or “beautiful” or “elegant,” the same words we use to describe paintings and novels.
These things have their practical uses, of course, and it’s a mystery, if anything, why
basic mathematical results have such diverse applications. But the main point is the
artistry. As Hardy put it:

“Real mathematics must be justified as art if it can be justified at all.”
- G. H. Hardy

Notes and references

Jefferey C. Lagarias provides invaluable material on the 3n+1 problem in his edited
volume The Ultimate Challenge: The 3x+1 Problem (2010). This book contains
technical surveys, important early papers, and historical notes.
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Lagarias references a private discussion (circa 1981) between himself andmath-
ematician Shizuo Kakutani on various obsessions with the 3n+1 problem at Yale
University and the University of Chicago around 1960, and the Russian conspiracy
jokes that followed. The book also includes Lothar Collatz’s paper “On the Moti-
vation and Origin of the (3n+1)-Problem,” in which Collatz reminisces about his
discovery. (Curiously, this paper was originally published in Chinese!)

To see how computers are used to check 3n+1 start numbers, see TomásOliveira
e Silva’s 2010 paper, “Empirical verification of the 3n+1 and related conjectures,”
in Lagarias’ edited volume.

Andrew Booker and Andrew Sutherland describe solving x3 + y3 + z3 = 3 in
their paper “On a Question of Mordell” (https://arxiv.org/abs/2007.01209). Their
work used the Charity Engine, a global network of 500,000 volunteered personal
computers.

The site https://mathprize.net hosts the rules for the million-dollar 3n+1 prize
offered by Bakuage Co., Ltd. of Tokyo, Japan.

The quotations from G. H. Hardy are taken from the book A Mathematician’s
Apology, where Hardy passionately defends the value of theoretical mathematics
and a career immersed in it.

Winston Churchill’s description of Russia, re-purposed here, is from a 1939
BBC Radio Broadcast.

Hundreds of pages into Principia Mathematica (1912), authors Bertrand Rus-
sell and Alfred North Whitehead are finally1 able to prove 1 + 1 = 2, and they
cannot resist adding a wry comment:

∗110 · 643. ⊢ . 1 +c 1 = 2
Dem.

⊢ . ∗ 110 · 632 . ∗ 101 · 21 · 28 . ⊃
⊢ .1 +c 1 = ξ̂{(∃y).y ∈ ξ . ξ – ι‘y ∈ 1}
[∗54 · 3] = 2 . ⊃ ⊢ . Prop

The above proposition is occasionally useful.

For the full story behind Principia Mathematica in graphic-novel form, see
Logicomix, by Apostolos Doxiadis and Christos Papadimitriou (2009).

The chapter’s opening quote is from Bob Dylan’s song “My Own Version of
You” (2020). In his 2004 autobiography, Dylan writes cryptically about a mathe-
matical system for music that he discovered, which “works in a cyclical way. Be-
cause you’re thinking in odd numbers instead of even numbers, you’re playing with
a different value system.” Let’s put that in our pocket for future use. Dylan was
always interested in math. In the program notes for his Never-Ending Tour (as re-
ported by NME.com), he said, “I wouldn’t even think about playing music if I was

1https://quod.lib.umich.edu/u/umhistmath/AAT3201.0002.001/126?rgn=full+text;view=pdf;←↩
q1=principia+mathematica
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born in these times... I’d probably turn to something like mathematics. That would
interest me. Architecture would interest me. Something like that.”

So impactful were the writings of Bertrand Russell, Winston Churchill, and Bob
Dylan that all three received the Nobel Prize in Literature without writing a single
noted work of literary fiction.



Chapter 13

What can compute 3n+1?

“Young man, in mathematics you don’t understand things.
You just get used to them.”

John von Neumann

Reducing one problem to another

What else can we do when faced with a hard problem? Mathematicians often try
to reduce their problem into some other problem that people already know how to
solve:

My problem→ Reduction → Known easy problem

For example, if I want to find the shortest route from A to B on a map, I can
convert the map into a flat list of road segments:

185
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Road(p1, p2, 120) (a 120-meter road connects places p1 and p2)
Road(p2, p3, 51)
Road(p2, p4, 204)
…

You might think this isn’t too helpful. But in 1959, Dutch computer scientist
Edsger Dijkstra figured out how to take any list like this and find the guaranteed
shortest path between any two places. Even better, his method works very fast. So,
we saved ourselves a lot of problem-solving by reducing our problem to his, then
using his efficient solution.

We already did a bit of reduction in our 3n+1 no-circuit proof. We converted the
problem of finding 3n+1 circuits to a problem of equation solving—namely, does
3x – 2x = m(2k–x – 1) have a solution in whole numbers? If someone has tools to
solve a Diophantine equation like this, then we can use their tools.

3n+1 problem→ Reduction → Diophantine equation solving

Mathematicians sometimes do reductions in the opposite direction:

Known hard problem→ Reduction →My problem

The idea is to find out how hard your problem is. You might not have a solution
to your problem (yet), but maybe you could show that a solution would suddenly
enable the solution to another problem, one that hundreds of determined, smart peo-
ple have previously failed to solve. That would be great, of course, but meanwhile
you’ve learned a sobering fact: your problem is objectively hard. You might even
learn that your problem is unsolvable. For example, any solution to your prob-
lem might, as a necessary side effect, produce two whole numbers p and q such
that p/q = π. Since we know no such fraction exists, we can conclude that your
problem has no solution.

De Mol’s tag system


2

Let’s reduce the 3n+1 problem to a marble game. We start with some sequence of
marbles and repeatedly apply these three rules:



CHAPTER 13. WHAT CAN COMPUTE 3N+1? 187

any

Remove from left Add to right

*

*

*

any

any

- 0 1 2 3 4 5

-

0

1

2

3

4

5

Sample trajectory
(interpret as base 6)

Cellular Automaton Rules
ME

ME

- 1 1 - - - -

- - 3 4 - - -

- - 1 5 - - -

- - - 5 4 - -

- - - 2 5 - -

- - - - - - 1

…

- - - 1 1 2

=012345
=  ===1122
0  =001122
1  4334455
2  =001122
3  4334455
4  =001122
5  4334455

7

22

11

34

17

1
Korec 92

Convert base 6 
to base 10

2

- 0 0 1 1 22

4 3 3 4 4 55

- 0 0 1 1 22

- 0 0 1 1 22

4 3 3 4 4 55

4 3 3 4 4 55

For example, if we start with 6 blackmarbles, we remove 2marbles from the left
(black and black), and add 2 marbles to the right (gray and white). Any collection
of such rules is called a tag system. Here’s what happens if we keep using these
three rules:

any

Remove from left Add to right

*

*

*

any

any

- 0 1 2 3 4 5

-

0

1

2

3

4

5

Sample trajectory
(interpret as base 6)

Cellular Automaton Rules
ME

ME

- 1 1 - - - -

- - 3 4 - - -

- - 1 5 - - -

- - - 5 4 - -

- - - 2 5 - -

- - - - - - 1

…

- - - 1 1 2

=012345
=  ===1122
0  =001122
1  4334455
2  =001122
3  4334455
4  =001122
5  4334455

7

22

11

34

17

1
Korec 92

Convert base 6 
to base 10

2

- 0 0 1 1 22

4 3 3 4 4 55

- 0 0 1 1 22

- 0 0 1 1 22

4 3 3 4 4 55

4 3 3 4 4 55

I’ve put a star (*) next to each line that contains only black marbles. If we start
with 6 black marbles, we eventually get 3 black marbles, and later 5 black marbles.
If we keep going, we get 6 - 3 - 5 - 8 - 4 - 2 - 1. That’s a 3n+1 trajectory! Amazingly,
this tag system computes 3n+1, but without any explicit arithmetic.

Notice that the reduction involves a slowdown. In simulating 3n+1, the tag
system introduces some intermediate steps.

Question 29: Howmany steps does it take to get from 10 blackmarbles
to 5 black marbles?

3n+1 problem→ Reduction → Tag system
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Liesbeth de Mol discovered this tag system as part of her Ph.D. in philosophy
at the University of Ghent in Belgium. She subsequently moved to the Univer-
sity of Lille, and much of her later work focuses on the history and philosophy of
computing.

Why reduce the 3n+1 problem to a tag system? Because tag systems have been
extensively studied ever since their invention in 1922 by Emil Post. A central ques-
tion in the theory of tag systems is:

Given m rules, each of which replaces n marbles on the left,
will the system terminate on all input sequences?

A tag system terminates when it reaches a sequence with fewer than n marbles.
DeMol’s system terminates when there is one black marble left. So, the question of
whether de Mol’s tag system always terminates is the same as the 3n+1 conjecture.

Emil Post developed a method for answering the termination problem for tag
systems. Given any set of rules, it will automatically tell you whether all input
sequences terminate. Great! What happens when we ask the method about de
Mol’s tag system? Unfortunately, Post’s method only works for the case m = 2,
while de Mol uses 3 colors of marbles. (Post actually never published his 2-color
method, but de Mol worked it out in her dissertation.)

Post tried to create methods for checking the termination of tag systems with
larger values of m, but he failed. And for a good reason: a sufficiently-large tag
system (m = 288) can simulate a general-purpose computer, as first shown by
Marvin Minsky in the 1960s.

General-purpose computer→ Reduction → Tag system (m = 288)

This means you can take any Python or C++ program, plus any input to that
program, and convert them into a marble sequence for a specific tag system. The
subsequent evolving marble sequences mimic the evolving internal state of a com-
puter, including the program, input, and any scratch-pad computations. The tag
system terminates if (and only if) the computer program stops.

Here’s the kicker. It’s impossible to tell whether a computer program is going
to stop. This was first shown by Alan Turing in the 1930s. He called it the halting
problem. Consider three sample programs:

(a) for i = 1 to 10, print i; halt.
(b) x = 0; repeat until x is odd: x = x + 2.
(c) x = 3512; repeat until x is a Wieferich prime: x = x + 1.

Clearly, program (a) terminates, and clearly, program (b) will run forever. But
how about program (c)? Nobody knows whether there are any Wieferich primes
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greater than 3511, but there might be. Even after running program (c) for 100 years,
we wouldn’t be able to conclude anything. At any given moment, it might be about
to discover a new Wieferich prime.

That means there’s no method that tells whether any tag system (withm ≥ 288)
terminates, because if there were, we could use the method to solve an unsolvable
problem. I feel bad for Emil Post. Working in the pre-Gödel, pre-Turing 1920s, he
didn’t even know there were unsolvable problems, much less that he was working
on one. Even today, my father insists that any problem is solvable.

Summarizing the situation:

For tag systems with m ≤ 2, there’s a method to check whether it
terminates on all inputs.

For tag systems with m ≥ 288, there can be no method.

For a tag system with m = 3 (like de Mol’s), neither fact applies. Ultimately,
our knowledge about tag systems doesn’t help us solve the 3n+1 problem. Perhaps
it will work out in the reverse way: solving the 3n+1 problemmay tell us something
about tag systems one day.

An amazing computer assault on the 3n+1 problem


32

In 2021, three researchers reported an amazing assault on the 3n+1 problem, quite
different from anything tried before. Emre Yolcu, Scott Aaronson, and Marijn J.
H. Heule (I’ll call them YAH) reduced the 3n+1 problem to a rewrite system and
used computer power to check for termination.

3n+1 problem→ Reduction → Rewrite system

YAH’s key idea was a mirror world. We know that normal 3n+1 trajectories
jump up and down: 6 - 3 - 5 - 8 - 4 - 2 - 1. If they only went down, then they’d
be guaranteed to reach 1. Maybe there’s a mirror world whose parallel trajectories
always go down.

Imagine every number had a twin in the mirror world, such as:

Twin(1) = 5 Twin(2) = 9 Twin(3) = 20 Twin(4) = 12
Twin(5) = 18 Twin(6) = 23 Twin(7) = 26 Twin(8) = 14

Then every 3n+1 trajectory would have a corresponding mirror-world trajec-
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tory. For example,

Real world trajectory: 6 - 3 - 5 - 8 - 4 - 2 - 1
Mirror world trajectory: 23 - 20 - 18 - 14 - 12 - 9 - 5

Now imagine every time we take a step in the real world, by applying either
3n+1
2 or n

2 , the corresponding mirror-world sequence decreases, like in the exam-
ple above. Then every mirror-world trajectory would eventually have to stop, and
therefore, so would its corresponding real-world trajectory, which would confirm
the 3n+1 conjecture.

Like de Mol, YAH work with marble sequences instead of numbers. Instead of
just three kinds of marbles (black, gray, and white), YAH use seven kinds:

f, t, o, 1, 2, <, >

Here’s a typical trajectory:

YAH: <t> <2> <ft> <f2> …
Real-world interpretation: 3 5 5 8 …
Mirror-world interpretation: [84 0] [78 0] [69 0] [62 0] …

YAH sequences are more compact than de Mol’s. For example, 8 is just <f2>,
and 2187 is <ooooooo>. In the latter case, De Mol would need 2187 (black) mar-
bles, but YAH only need 9.

To enable trajectories, YAH use eleven rules:

Rule #1: t>→ 2> Rule #5: <1→ <ff Rule #9: t1→ 2f
Rule #2: <2→ <ft Rule #6: fo→ of Rule #10: t2→ 2t
Rule #3: f>→ > Rule #7: f2→ 1f Rule #11: f1→ ot
Rule #4: <o→ <t Rule #8: to→ 1t

Rule #1 means, anywhere you see t>, you can replace it with 2>. In a rewrite
system, replacements are allowed anywhere in a marble sequence, not only on the
left or right edge. Rewrite systems aren’t deterministic like tag systems or the 3n+1
rule. That’s okay. YAH just need to show that no matter what rules we apply, the
mirror-world interpretation consistently decreases.

How do we know <t> means 3 in the real-world interpretation? Each type of
marble is associated with a function:

f: 2n o: 3n <: 1
t: 2n + 1 1: 3n + 1 >: n

2: 3n + 2

We apply those functions left-to-right. Here are some examples:
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<t> < 1 → 1→ t 2n+1 → 3→ > n → 3

<f2> < 1 → 1→ f 2n → 2→ 2 3n+2 → 8→ > n → 8

<2> < 1 → 1→ 2 3n+2 → 5→ > n → 5

Each of YAH’s rules properly reflect the 3n+1 rule. For example, when Rule #1
replaces t> (2n+1) with 2> (3n+2), it’s essentially applying 3n+1

2 to an odd number
2m+1, because 3(2m + 1) + 1)/2 = (6m + 4)/2 = 3m + 2.

Question 30: What’s the interpretation of <f>?

Lastly, we need a way to do a mirror-world interpretation. See how the mirror-
world numbers go steadily down in this example?

YAH: <t> <2> <ft> <f2> <1f> <1> <ff> <f> <>
Real world: 3 5 5 8 8 4 2 2 1
Mirror world: [84 0] [78 0] [69 0] [62 0] [41 0] [27 0] [26 0] [14 0] [12 0]

You’ve probably noticed that YAH’s mirror world consists of pairs of numbers
(vectors) instead of single numbers. How do we interpret <t> as [84 0]? This
time, we proceed through <t> right-to-left, instead of left-to-right, as befits a mirror
world. A good way to convert one vector into another is with matrix multiplication
and addition, so YAH associate with each marble-type an affine function:

f:
[
1 1
1 0

]
x o:

[
7 2
2 5

]
x +

[
1
0

]
<:

[
1 5
0 0

]
x

t:
[
1 3
3 4

]
x +

[
1
1

]
1:

[
2 1
1 1

]
x +

[
1
0

]
>:

[
2
2

]
2:

[
2 2
2 4

]
x +

[
0
2

]
To compute the mirror-world interpretation of <t>, we apply these functions

right-to-left:

> [
2
2

]
→

[
2
2

]
→ t [

1 3
3 4

]
x +

[
1
1

]
→

[
9
15

]
→ < [

1 5
0 0

]
x →

[
84
0

]
Question 31: What’s the mirror-world interpretation of <f>? If it
helps:

[ a b
c d

][ e
f
]
=

[ ae+bf
ce+df

]
and

[ a
b
]
+
[ c

d
]
=

[ a+c
b+d

]
.

Now, YAH didn’t come up with these seven affine functions by hand. Instead,
they asked a computer to sift through zillions of combinations of matrices. One
computer run yielded the matrices above.

So, did YAH win the million-dollar prize for solving the 3n+1 conjecture? Al-
most. It turns out these matrices work nicely for the trajectory in our example, but
only because it doesn’t use Rule #11. With Rules #1-10, the matrices guarantee the
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mirror-world interpretations will decrease. But if we apply Rule #11, the mirror-
world interpretation might go up. Since some start numbers need Rule #11, we
can’t guarantee the rewrite system will terminate.

There’s nothing especially tricky about Rule #11—the computer can also find
matrices that work for all 10 rules except Rule #3. But it isn’t able to find matrices
for all 11 rules together. YAH had success with problems similar to 3n+1, and there
are manymore things to try along these lines. Bringing brute-force computer power
into the picture could change the game, as it did for the Four Color Theorem.

A cellular automaton


33

In 1992, Slovak mathematician Ivan Korec reduced the 3n+1 problem to a cellular
automaton, situating it inside another highly-studied field.

3n+1 problem→ Reduction → Cellular automaton

In a one-dimensional cellular automaton, an initial marble sequence is put into
an infinite row of cells. Korec used 7 types of marbles (–, 0, 1, 2, 3, 4, 5, and 6).
The trajectory proceeds row by row, as shown on the left below.

Sample trajectory Rule matrix

– 1 1 – – – – – 0 1 2 3 4 5
– – 3 4 – – – – – – – 1 1 2 2
– – 1 5 – – – 0 – 0 0 1 1 2 2
– – – 5 4 – – 1 4 3 3 4 4 5 5
– – – 2 5 – – 2 – 0 0 1 1 2 2

... 3 4 3 3 4 4 5 5
4 – 0 0 1 1 2 2

– – – – – – 1 5 4 3 3 4 4 5 5

The pattern 11 evolves into 34 (shifted over one position), then 15, and so on:
11 - 34 - 15 - 54 - 25- ... - 1. This doesn’t look like a 3n+1 trajectory. But if we
convert these numbers from base-6 to base-10, we get an accurate 3n+1 trajectory:
7 - 22 - 11 - 34 - 17 - ... - 1.

The automaton’s rules for constructing each subsequent row are shown on the
right. Each cell takes a value that depends only on the cell above it (across the top
of the rule matrix), and the cell to the left of that (down the left of the rule matrix).

Korec’s automaton faithfully simulates the 3n+1 rule. Notice there’s no slow-
down, whichmeans Korec’s automaton can provide a fast, practical way to compute
3n+1 trajectories without arithmetic.
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Is there a general method for telling whether some cellular automaton reaches
some target pattern (like 1) from all starting inputs? I’m sorry to say, no. The rea-
sons are similar to before. Since some cellular automata can implement a general-
purpose computer, there’s no general method for predicting what an arbitrarily-
given cellular automaton will do.

Of course, many individual cellular automata are predictable. For example,
if we replace every entry in Korec’s rule table with a dash (–), we can certainly
predict what happens to every start pattern. Korec’s 3n+1 automaton itself might be
likewise predictable one day, or it might turn out to have general-purpose computing
ability. Or maybe something in between, unable to run arbitrary programs, but
unpredictable nonetheless. Currently, 3n+1 lies in unclaimed territory:

Jagged mountains of
general-purpose computing systems

Gentle prairie of
predictable systems

Unclaimed
territory

3n+1

tag systems
rewrite systems

cellular automata

4n+1
5n+1your laptop

23 223153 213156 3159

A B C
(2)(3)(5)

A B C
(2)(3)(5)

A B C
(2)(3)(5)

A B C
(2)(3)(5)

Pre-processing:

If x has any divisors 
between 2 and x-1,
then n = x.
Otherwise, n = 2x.

tag systems (m=2)

Odd x
Start 

number
n

3n+1
(one step)

n1

Post-processing:

If n1 > n
Otherwise

Prime
Composite

cu ∙ 22
(37,185 ∙ 22 )

3

The Farkas rule

When you’re faced with a hard problem, one strategy is to simplify it. Unfortu-
nately, 3n+1 is already very simple! Another strategy is to generalize it.

For example, if I want to get from Los Angeles to Honolulu by car, I might
keep planning different routes. Hmm, maybe if I go through the Aleutian Islands
in Alaska? Then down to Vietnam? Hmm. If I’m a mathematician, I will step back
at some point and ask, “Wait, how can I plan a route from anywhere to anywhere?”

It seems like I made my problem harder. But there’s actually a straightforward
method that solves the anywhere-to-anywhere problem, which we saw earlier, from
Edsger Dijkstra. Armed with that, I can return to view my LA-to-Honolulu diffi-
culties in a new light. Ah, we can’t get from LA to Honolulu by car. We can get
from LA to Pensacola Beach, Florida, though. Maybe we’ll go there instead.

In fact, we’ve already generalized the 3n+1 problem to the qn+1 problem, which
was pretty helpful. The 3n+1 problem doesn’t have non-trivial circuits, while the
5n+1 problem does. The 181n+1 has a cycle of length 15, and the 1093n+1 problem
has numbers that provably diverge to infinity. We may find these facts useful when
we’re trying to resolve the 3n+1 conjecture.

Another way to generalize 3n+1 is to increase the number of if-then conditions
in the rule. Here’s our familiar two-way rule:
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If n is even, replace it with n/2.
If n is odd, replace it with (3n + 1)/2.

Or stated another way:

If n ≡ 0 (mod 2), replace it with n/2.
If n ≡ 1 (mod 2), replace it with (3n + 1)/2.

And here’s a new multi-way rule:

If n ≡ 0 (mod 6), replace it with n/2.
If n ≡ 1 (mod 6), replace it with (n – 1)/3.
If n ≡ 2 (mod 6), replace it with n/2.
If n ≡ 3 (mod 6), replace it with (3n + 1)/2.
If n ≡ 4 (mod 6), replace it with (n – 1)/3.
If n ≡ 5 (mod 6), replace it with (3n + 1)/2.

We divide n by 6, and if there’s no remainder, we take the first branch. If there’s
a remainder of 1, we take the second branch, and so forth. The particular rule above
is called the Farkas rule, after Israeli-American mathematician Hershal Farkas. Its
trajectories are often shorter than 3n+1 trajectories:

Farkas rule 3n+1 rule
3 - 5 - 8 - 4 - 2 - 1 3 - 5 - 8 - 4 - 2 - 1
7 - 2 - 1 7 - 11 - 17 - 26 - 13 - 20 - 10 - 5 - 8 - 4 - 2 - 1

Farkas proved that all start numbers do go to 1 under this rule, and YAH auto-
matically obtained a mirror-world proof. So, the Farkas rule provides a 3n+1-type
problem that’s amenable to the attacks we’ve been looking at.

Question 32: What makes the Farkas-rule trajectory for 7 so short?
What’s the main difference between 3n+1 and the Farkas rule?

The original Collatz rule


38

Back in Chapter 1, we mentioned that Lothar Collatz wrote another multi-way rule
in his notebook on July 1, 1932:

If n ≡ 0 (mod 3), replace it with 2n/3.
If n ≡ 1 (mod 3), replace it with (4n – 1)/3.
If n ≡ 2 (mod 3), replace it with (4n + 1)/3.

This is called the original Collatz rule. Because John Conway popularized it,
it’s sometimes called the Conway map. Here are some cycles induced by the rule:



CHAPTER 13. WHAT CAN COMPUTE 3N+1? 195

1 - 1
2 - 3 - 2
4 - 5 - 7 - 9 - 6 - 4
44 - 59 - 79 - 105 - 70 - 93 - 62 - 83 - 111 - 74 - 99 - 66 - 44

The rest of the numbers seem to run off to infinity. I like to imagine Lothar
Collatz on the train with his notebook, mumbling to himself, “What the heck?”

There’s one big difference between the original Collatz rule and the 3n+1 rule.
In the 3n+1 rule, numbers often have two predecessors. For example, you can get
to 8 from either 5 or 16. Not so with the original Collatz rule, where every number
has a unique predecessor. It’s easier to see this if we rewrite the rule like this:

3n goes to 2n
3n + 1 goes to 4n + 1
3n + 2 goes to 4n + 3

Every number matches exactly one of 3n, 3n + 1, or 3n + 2, so it has a unique
successor. But every number also matches exactly one of 2n, 4n + 1, or 4n + 3,
giving it a unique predecessor. Instead of the Collatz tree, we get something quite
different-looking:

229,392
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36,076,452,597

111,377

…

10

15

11

…

1,196,642,813

44

74

99

66

83 62

93

70

105

79

59

44

111

74

99

66

83

62

93

70

105

79

59

57

9

6
4

1

2

3

8

…
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…

111,377

…

10

15

11

…

Original Collatz rule

…

1,196,642,813

… ?

111

57
9

6
41

2

3

… …Original Collatz rule

? ?

Here, the cycles are nicely self-contained. Unlike qn+1 cycles, they don’t suck
in other numbers. 1, 2, 3, 4, 5, 6, and 7 participate in known cycles. But 8 is
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a mystery. If we start at 8 and keep going, will we ever get back to 8? Nobody
knows. The magic 8-ball says: “Ask again later!”

Question 33: Does this make you think about fate, determinism, and
free will? If 8 were alive, what would you tell it?

A consistent rule format

Now let’s put every rule into a common format:

3n+1: (1n + 0)/2 when n ≡ 0 (mod 2)
(3n + 1)/2 when n ≡ 1 (mod 2)

5n+1: (1n + 0)/2 when n ≡ 0 (mod 2)
(5n + 1)/2 when n ≡ 1 (mod 2)

Original Collatz: (2n + 0)/3 when n ≡ 0 (mod 3)
(4n – 1)/3 when n ≡ 1 (mod 3)
(4n + 1)/3 when n ≡ 2 (mod 3)

In this format, every rule has d conditions, with values of ai, bi, and d unique
to that rule:

(a0n + b0)/d when n ≡ 0 (mod d)
(a1n + b1)/d when n ≡ 1 (mod d)

…
(ad–1n + bd–1)/d when n ≡ d – 1 (mod d)

The Matthews-Watts conjecture


43

The 3n+1 conjecture says that all numbers reach a cycle, namely the trivial 1-2-1
loop. Part of its plausibility is this: if we take two steps, one even and one odd,
then we’ll end up replacing n with approximately n1

2
3
2 = 3

4n. So, trajectories
trend downwards. The opposite happens in the 5n+1 problem, where n typically
gets replaced by 5

4n after two steps, so we expect almost all numbers to diverge to
infinity.

How about the original Collatz rule? If its three branches are taken equally of-
ten, then we might expect n to be replaced by 2

3
4
3
4
3n = 32

27n. Since 32
27 > 1, we

again expect almost all numbers to diverge, which is consistent with our observa-
tions.

Notice that 23
4
3
4
3 = 2·4·4

33
. Let’s call a0 a1...ad–1

dd the critical density of a 3n+1-
type rule. TheMatthews-Watts conjecture says:
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Matthews-Watts conjecture:

1) If the critical density
a0 a1 . . . ad–1

dd < 1 (contracting rule),

then every start number reaches a cycle.

2) If the critical density
a0 a1 . . . ad–1

dd > 1 (expanding rule),

then almost all start numbers diverge to infinity.

3) In either case, the number of distinct cycles is finite.

Note! Only applies to rules where a0 a1 . . . ad–1 and d are co-prime.

K. R. Matthews is an Australian mathematician. I like to imagine that his co-
author A. Watts is the Zen philosopher Alan Watts, who once said: “If a flower had
a God, it would not be a transcendental flower, but a field,” which sounds like a
pretty deep mathematical observation. If K. R. Matthews happens to read this, he
can tell me about the real A. Watts.

The Matthews-Watts conjecture includes the 3n+1 conjecture as a special case,
since the 3n+1 rule is contracting. But Matthews-Watts is more general. The more
you fool around with multi-way systems, the more you believe in it. A stunning
feature of theMatthews-Watts conjecture is that the little +1s and -2s (the bi values)
aren’t mentioned! The conjecture says they’re irrelevant to the overall behavior of
the system.

A barely expanding system

It should be fun to torture the Matthews-Watts conjecture by designing a rule where
the critical density is very close to 1. Here’s such a rule. I can’t decide whether to
call it the “near-flat universe rule” or the “Eurozone economy” rule:

(1n + 0)/5 when n ≡ 0 (mod 5)
(2n + 3)/5 when n ≡ 1 (mod 5)
(3n + 4)/5 when n ≡ 2 (mod 5)
(521n + 2)/5 when n ≡ 3 (mod 5)
(1n + 1)/5 when n ≡ 4 (mod 5)

The critical density is (1 · 2 · 3 · 521 · 1)/55 = 3126/3125 ≈ 1.0003. What
happens with a barely-expanding rule like this? Let’s try the start number 3:
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3 - 313 - 32,615 - 6523 - 679,697 - 407,819 - 81,564 - 16,313 - 1,699,815
- 339,963 - 35,424,145 - 7,084,829 - 1,416,966 - 566,787 - 340,073 -
35,435,607 - 21,261,365 - 4,252,273 - 443,086,847 - 265,852,109 -
53,170,422 - 31,902,254 - 6,380,451 - 2,552,181 - 1,020,873 -

106,374,967 - 63,824,981 - 25,529,993 - 2,660,225,271 - 1,064,090,109 -
212,818,022 - 127,690,814 - 25,538,163 - 2,661,076,585 - 532,215,317 -
319,329,191 - 127,731,677 - 76,639,007 - 45,983,405 - 9,196,681 -

3,678,673 - 383,317,727 - 229,990,637 - 137,994,383 - 14,379,014,709 -
…

As expected, 3 seems to be rocketing to infinity. But, let’s go a little further:

… - 2,875,802,942 - 1,725,481,766 - 690,192,707 - 414,115,625 -
82,823,125 - 16,564,625 - 3,312,925 - 662,585 - 132,517 - 79,511 -

31,805 - 6361 - 2545 - 509 - 102 - 62 - 38 - 3960 - 792 - 476 - 191 - 77 -
47 - 29 - 6 - 3

Whoa, back to 3! This is the craziest cycle yet. Next time some trajectory
passes the two-billion mark, I won’t give up on it. Here are more trajectories that
lead to cycles under this rule:

4 - 1 - … - 1
5 - 1 - … - 1
7 - 5 - 1 - … - 1
8 - 834 - 167 - 101 - 41 - 17 - 11 - 5 - 1 - … - 1
9 - 2 - … - 2
13 - 1355 - 271 - 109 - 22 - 14 - 3 - … - 3

Of the start numbers from 1 to 100, all but nine are quickly dragooned into
cycles. Has the Matthews-Watts conjecture failed us? Remember, it predicts that
even with a barely-expanding rule, almost all numbers should diverge to infinity.
Let’s measure the percentage of numbers that get quickly caught in a cycle:

Range of start numbers 1-100 1-1000 1-100,000 …
5n+1 rule 40% 17% 3% …
Near-flat universe rule 91% 86% 83% …

Ah … presumably, these percentages will get closer and closer to zero, as the
range increases. Puny, human-sized start numbers may fall into cycles, but ulti-
mately, they’re just a bunch of rare exceptions, and everything else diverges to
infinity. Or so says the Matthews-Watts conjecture!
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3n+1 without the +1


52

TheMatthews-Watts conjecturemakes no reference to the additive b’s, like the “+1”
in the 3n+1 rule. Do we even need the “+1”? If there were a 3n+1 rule without any
+1’s, it might be easier to analyze. Such a rule would simply look like this:

Replace n by a0n when n ≡ 0 (mod d)
Replace n by a1n when n ≡ 1 (mod d)

…
Replace n by ad–1n when n ≡ d – 1 (mod d)

Here, we allow ai to be any fraction.
We can easily implement operations like 1

2n or 3n with such a rule, but how to
implement 3n+1? We need two tricks. One is to use scratch space. Like in deMol’s
tag system, we need not implement 3n+1 in a single step of our new rule. The other
is to encode trajectory numbers inside exponents. If we want to start with 6, we use
start number 26 instead. For example:

Old style: 3 - 10 - 5 - 16 - 8 - 4 - 2 - 1

New style: 23 -… - 210 - …- 25 -… - 216 - … - 28 - …- 24 -…- 22 -…- 21

8 - …- 1024 -…- 32 -…- 65,536 -…- 256 -…- 16 -… - 4 - … - 2

What kind of rule can implement this new-style trajectory? First, let’s make a
rule that turns 2x into 23x+1, for any odd x. Here’s a sample trajectory:

23 - 223153 - 213156 - 3159 - 510 - 2159 - 2258 - 2357 - 2456 - 2555 - …- 2951 - 210

You can see the strategy. We decrement the exponent of 2 from 23 to 22 to 21

to 20, while simultaneously incrementing the exponent of 5 from 50 to 53 to 56 to
59, giving us 9, which is almost what we want. We change 9 to 10 and drop the 31,
giving us 510. Finally, we turn 510 into 210.

The trick is to replace the “plus one” with “times five,” so that each step of the
trajectory involves a simple multiplication. For example, to get from 3159 to 510,
we multiply by 5

3 , and to get from 2951 to 210, we multiply by 2
5 .

Question 34: Can you annotate the trajectory above (23 – . . . – 210)
with a multiplier fraction between each pair of terms?

How do we know whether to apply 5
3 or 2

5? Just like the regular 3n+1 rule
branches on odds and evens, here we branch on remainders modulo 30:
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Replace n by
375

2
n when n ≡ 2 or 8 (mod 30) 2odd

Replace n by
125

2
n when n ≡ 0 (mod 30) 2x3y5z

Replace n by
5

3
n when n ≡ 15 (mod 30) 3x5y

Replace n by
2

5
n when n ≡ 5, 10, 20, or 25 (mod 30) 5x or 2x5y

Notice that the second condition (n ≡ 0 mod 30), is only invoked on numbers
of the form 2x3y5z (x, y, z > 1), because you’re only divisible by 30 if you’re
divisible by 2, 3, and 5. The same principle is used to identify numbers of the form
2x5y, 3x5y, and the like.

The trajectory itself is like some crazy version of the Tower of Hanoi puzzle
where poles A, B, and C correspond to 2, 3, and 5. At each step, we add or remove
discs from each pole.

Jagged mountains of
general-purpose computing systems

Gentle prairie of
predictable systems

Unclaimed
territory

3n+1

tag systems
rewrite systems

cellular automata

4n+1
5n+1your laptop
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Pre-processing:

If x has any divisors 
between 2 and x-1,
then n = x.
Otherwise, n = 2x.
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Odd x
Start 

number
n

3n+1
(one step)

n1

Post-processing:

If n1 > n
Otherwise

Prime
Composite

cu ∙ 22
(37,185 ∙ 22 )

3

For example, if all the discs start on pole A, then we move one of them to pole
B, and add three new discs to pole C. Likewise, if we see all three poles occupied,
we remove a disc from A and add three discs to C.

The previous rule only works for odd x. For even x, let’s build another rule to
map 2x into 2x/2:

210 - 2831 - 2632 - 2433 - 2234 - 35 - 3451 - 3352 - 3253 - 3154 - 55 - 2154 - …- 25

Now we decrement the exponent of our start number from 210 to 28 to … 20,
while simultaneously incrementing the exponent of 3 from 30 to 31 to … 35. At
this point, the exponent of 3 holds our answer: we’ve cut our 10 in half. Next, we
execute similar operations to turn 35 into 55, and then 55 into our final 25.
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Replace n by
3

4
n when n ≡ 4, 6, 12, 16, 18, or 24 (mod 30) 2even, 2x3y

Replace n by
5

3
n when n ≡ 3, 9, 15, 21, or 27 (mod 30) 3x or 3x5y

Replace n by
2

5
n when n ≡ 5, 10, 20, or 25 (mod 30) 5x or 2x5y

Why not go directly from 33 to 23, skipping the 5x business? That would re-
grettably introduce numbers of the form 2x3y, which already trigger the 3

4n branch
of our rule. A number like 2234 can’t trigger 3

4 sometimes and
2
5 other times. Each

number on the scratch pad has to pack all the needed information into its exponents,
because the next step depends on it exclusively.

Finally, let’s combine the two rules (even and odd) together, to obtain a single
30-way rule that fully implements 3n+1 without any +1s:

New 3n+1 rule:

Replace n by
375

2
n when n ≡ 2 or 8 (mod 30) 2odd

Replace n by
125

2
n when n ≡ 0 (mod 30) 2x3y5z

Replace n by
5

3
n when n ≡ 3, 9, 15, 21, or 27 (mod 30) 3x or 3x5y

Replace n by
2

5
n when n ≡ 5, 10, 20, or 25 (mod 30) 5x or 2x5y

Replace n by
3

4
n when n ≡ 4, 6, 12, 16, 18, or 24 (mod 30) 2even or 2x3y

In the end, it’s a pretty simple rule! Here’s a complete trajectory for 23 = 8,
written this time without prime factorizations:
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8 (• • •) - 1500 - 93,750 - 5,859,375 - 9,765,625 - 3,906,250 - 1,562,500 -
625,000 - 250,000 - 100,000 - 40,000 - 16,000 - 6400 - 2560 - 1024

(• • • • • • • • ••) - 768 - 576 - 432 - 324 - 243 - 405 - 675 - 1125 - 1875 -
3125 - 1250 - 500 - 200 - 80 - 32 (• • • • •) - 6000 - 375,000 - 23,437,500
- 1,464,843,750 - 91,552,734,375 - 152,587,890,625 - 61,035,156,250 -
24,414,062,500 - 9,765,625,000 - 3,906,250,000 - 1,562,500,000 -

625,000,000 - 250,000,000 - 100,000,000 - 40,000,000 - 16,000,000 -
6,400,000 - 2,560,000 - 1,024,000 - 409,600 - 163,840 - 65,536

(• • • • • • ••) - 49,152 - 36,864 - 27,648 - 20,736 - 15,552 - 11,664 -
8748 - 6561 - 10,935 - 18,225 - 30,375 - 50,625 - 84,375 - 140,625 -
234,375 - 390,625 - 156,250 - 62,500 - 25,000 - 10,000 - 4000 - 1600 -
640 - 256 - 192 - 144 - 108 - 81 - 135 - 225 - 375 - 625 - 250 - 100 - 40 -

16 (• • ••) - 12 - 9 - 15 - 25 - 10 - 4 (••) - 3 - 5 - 2 (•)

Similarly, the start number 231 takes 202,215 steps to reach 21.

Question 35: Why does the trajectory above contain the nice, round
number 100,000,000?

Properties of the 30-way rule

Does every start number 2x wind up at 21? That’s the same question as the 3n+1
conjecture. If we feel the pesky +1 complicates our 3n+1 analyses, we can decide
to work with this 30-way rule instead.

Is this rule expanding or contracting, according to Matthews-Watts? The den-
sity factor is (3752 )2(1252 )(53 )

5(25 )
4(34 )

6 = 128, 750 ≫ 1, making this a heavily-
expanding rule. So, the Matthews-Watts conjecture should predict that almost all
numbers will diverge to infinity. Has the conjecture failed?

Intuitively, the conjecture shouldn’t apply at all here. Unlike the 3n+1 problem,
the conditions of our 30-way rule are invoked with very different frequencies. In
fact, they’re engineered that way. Furthermore, theMatthews-Watts disclaimer says
the conjecture only applies to rules with coefficients (a0, a1, . . . , ai, d) where all the
ai are co-prime with d, which is not the case here. Our modulus 30 is engineered
to be highly composite (30 = 2 · 3 · 5).
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This table shows how some of types of numbers behave mod 30:

x 1 2 3 4 5 6 7 8 9 10
2x mod 30 2 4 8 16 2 4 8 16 2 4

3x mod 30 3 9 27 21 3 9 27 21 3 9

5x mod 30 5 25 5 25 5 25 5 25 5 25

We see the old familiar cycle patterns, although this time, there’s no “1” at the
end of each cycle, because Fermat’s Little Theorem only applies to (ax mod p)
when a and p are co-prime.

Cycles revisited

The trivial 3n+1 cycle 1-2-4-1 has a trajectory of length 15 under the 30-way rule.
It’s a cycle because 21 multiplied by these 15 fractions is again 21:

21 ·
375

2
·
5

3
·
2

5
·
2

5
·
2

5
·
2

5
·
3

4
·
3

4
·
5

3
·
5

3
·
2

5
·
2

5
·
3

4
·
5

3
·
2

5
= 21

Generally speaking, if there’s a 3n+1 cycle starting at n, then 2n = 2n ·p, where
p=1 is a product of fractions drawn (with repeats) from the set {375

2 , 1252 , 53 , 25 , 34}.
Besides the list of 15 fractions above, what other lists of fractions have a product
p = 1? The shortest such list is:

125

2
·
5

3
·
5

3
·
2

5
·
2

5
·
2

5
·
2

5
·
2

5
·
3

4
·
3

4
= 1

However, no trajectory uses those particular fractions, in any order. For exam-
ple, the 125

2 fraction is only employed directly after a 375
2 fraction when n > 1. So,

p = 1 is a necessary condition for a 3n+1 cycle, but not a sufficient one.
Other fraction lists with p = 1 have lengths 20, 25, 30, 35, and so on. If we hit

a list whose members can be re-arranged to form a legal trajectory, then we’ll have
found a 3n+1 cycle. Of course, that list must contain tens of millions of members—
even more, considering the slowdown!

Monks’ simulator

The idea of “3n+1 minus the +” appeared in Ken Monks’ similarly-named 2002
paper. Monks essentially gave a 1,021,020-way rule to simulate 3n+1:
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Replace n with
1

11
n when n ≡ 0 (mod 1,021,020)

Replace n with 7n when n ≡ 1 (mod 1,021,020)

Replace n with
5

2
n when n ≡ 2 (mod 1,021,020)

…

Replace n with
33

4
n when n ≡ 128 (mod 1,021,020)

…
Replace n with 7n when n ≡ 1, 021, 019 (mod 1,021,020)

Here is Monks’ rule in action, starting with 27:

27 - 2531111 - 2531 - 2332111 - 2332 - 2133111 - 2133 - 3351 -

2332171 - 233251 - 2631171 - 263151 - 29171 - 2951 - 211 - 2931111

- 2931 - … - 217 - … - 226 - …

27 (128) matches the 129th condition of Monks’ rule, which says to replace n
with (33/4)n. This gives 128 · (33/4) = 1056 = 25 · 31 · 111, the next number in
the trajectory. 27 eventually gives way to 211, followed later by 217, then 226, and
so on. This is how Monks’ rule simulates the 3n+1 trajectory 7 - 11 - 17 - 26 - 13 -
20 - 10 - 5 - 8 - 4 - 2 - 1.

I say thatMonks “essentially” gave a 1,021,020-way rule. If wewrote the whole
rule, we’d see it contains only 10 distinct multipliers:

(
1

11
,
136

15
,
5

17
,
4

5
,
26

21
,
7

13
,
1

7
,
33

4
,
5

2
,
7

1
)

These are the multipliers that Monks gave, in that order. You’re supposed to
interpret the multipliers like this:

If n is divisible by 11, replace it by (1/11)n.
Otherwise if n is divisible by 15, replace it by (136/15)n.
Otherwise if n is divisible by 17, replace it by (5/17)n.

…
Otherwise, replace it by 7n.

The 1,021,020-way rule is just an expansion of this simple rule. This new rule
format is just an ordered list of fractions whose use is governed by implicit ifs and



CHAPTER 13. WHAT CAN COMPUTE 3N+1? 205

otherwises.

Question 36: Can you expand the if-then list (
1

3
,
4

5
,
5

1
) into a 3n+1-like

15-way rule?

Fractran

John Conway invented this if-then-otherwise rule format, named it Fractran, and
proved something mind-blowing:

No matter what computation you want to do,
there’s a Fractran rule that can do it.

Certainly, a Fractran rule can loop around and apply if-statements, but Con-
way’s claim seems extraordinary. Want to compute a number’s 3n+1 trajectory?
There’s a Fractran rule for that. Want to test if a number is prime? There’s a Frac-
tran rule for that. Want to sort a list of numbers, increase the contrast on a JPEG
image, or translate a Russian sentence into French? There are Fractran rules for
that. That means Fractran joins a club, together with tag systems, rewrite systems,
and cellular automata, called universal computers.

When we say “Fractran is a universal computer,” what do we mean?
Suppose I want to sort any list of numbers. I could wire up some specialized

circuitry for that. You’d supply the numbers as electrical voltages on the left side
of the wired-up circuit, and sorted numbers would appear in LEDs on the right
side of the circuit. It would be a sorting machine. If I wanted to test numbers for
primality, then I could wire up a different circuit. Maybe this circuit would have
special memory transistors, allowing it to cycle through possible divisors. This
would be a primality-testing machine.

However, a much better idea is to build just one machine: a laptop computer.
Instead of handing it some numerical input, you also hand it a program-number
plus an input-number. Then the laptop runs the program on the input and reports its
results. In this way, the laptop can simulate the sorting machine or the primality-
testing machine, but using fixed circuitry.

When we say “Fractran is a universal computer,” we don’t only mean what we
said before:

No matter what computation you want to do,
there’s a Fractran rule that can do it.

We also mean:
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There’s a single Fractran rule that accepts any program
as its start number, and simulates that program.

A universal Fractran rule

Your laptop is a pretty complicated piece of circuitry, so you might imagine a uni-
versal Fractran rule to be equally complicated. Not so. John Conway proved the
existence of such a rule in 1972, and he provided a concrete universal rule in his very
funny 1987 paper (“FRACTRAN: A Simple Universal Programming Language”).
Here’s the rule:

(
583

559
,
629

551
,
437

527
,
82

517
,
615

329
,
371

129
,

1

115
,
53

86
,
43

53
,
23

47
,
341

46
,

41

43
,
47

41
,
29

37
,
37

31
,
299

29
,
47

23
,
161

15
,
527

19
,
159

7
,
1

17
,
1

13
,
1

3
)

Just like your laptop comes with a programming manual, Conway provided a
programming manual (of sorts) for his universal Fractran rule. It starts like this:

With start number c · 2(2n),
the universal Fractran rule will run program c on input n.

If its trajectory reaches a number of the form 2(2
m), it outputs m.

Conway guarantees that no matter what program you want to run, there’s a
number c for it. He helpfully supplies a table of sample programs and their c values:

Program number Program description
c = 847 Ignores its input n and always outputs 1
c = 37,485 Subtracts one from its input (n = n – 1)
c = 2,268,945 Adds one to its input (n = n + 1)

And so on. According to Conway’s claim, somewhere down the list, there
should be a program described as “If n is even, n = n/2; otherwise, n = (3n+1)/2”
and another one described as “Translate a French sentence into English.”

It’s sometimes hard to tell if Conway is joking. Let’s test out his Fractran rule
by asking it to perform the subtraction “3 minus 1” using his program number c =

37, 485. Our start number becomes 37, 485 · 2(23) = 9, 596, 160, and here’s the
187-step trajectory:
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9,596,160 - 102,998,784 - 763,534,464 - 633,139,584 - 4,693,491,264 -
5,601,908,928 - 4,390,685,376 - 5,012,234,304 - 3,928,507,968 -

40,504,271,808 - 300,259,927,968 - 248,982,141,408 - 1,845,715,439,568
- 2,202,950,685,936 - 1,726,637,024,112 - 1,971,061,140,048 -

1,544,885,758,416 - ... - 63,147,001,528,611 - 10,015,578,579,006 -
11,481,273,005,202 - 1,821,014,287,092 - 2,087,504,182,764 -

331,093,506,744 - 379,546,215,048 - 60,198,819,408 - 69,008,402,736 -
128,997,470,160 - 147,875,148,720 - 72,364,434,480 - 629,255,952 -
37,015,056 - 2,847,312 - 219,024 - 16,848 - 1296 - 432 - 144 - 48 - 16

We go until we hit a number of the form 2(2
m). Here, 16 = 2(2

2), so our answer
is m = 2. In other words, 3 – 1 = 2, which is correct!

How does Conway do this? If I didn’t know what was going on, I’d assume
this trajectory was like any other random-looking 3n+1 trajectory we’ve seen so
far in this book. It starts around ten million, wiggles its way up to just short of two
trillion, then descends to sixteen. But Conway’s programming manual explains.
Here’s the same trajectory with prime factors exposed:

9,596,160 = 28 32 51 72 171

102,998,784 = 28 31 73 171 231

763,534,464 = 27 31 73 111 171 311

633,139,584 = 27 31 73 111 191 231

…
16 = 24

What Conway is doing is storing the state of a universal computer in the expo-
nents of the prime factors. We can think of each prime factor as a separate memory
register, a piece of computer memory. The initial state 28325172171 is a combina-
tion of the program number c = 37, 485 = 325172171 and the input n = 3, stored
as 2(23) = 28.

When the rule turns 28325172171 into 283173171231, it’s actually decrement-
ing registers 3 and 5, while incrementing registers 7 and 23. The next step decre-
ments register 2, among other things. Register 2 is very important; it’s where the
final answer appears, once the other registers are zeroed out.

When Conway selected the fractions of the universal Fractran rule, he was ac-
tually looking at another universal computer (a “Minsky machine”), and setting up
the fractions specifically to simulate that other computer. If a program loops for-
ever on a Minsky machine, it will also loop forever under the universal Fractran
rule, meaning no number of the form 2(2

m) will ever appear in its trajectory.

Question 37: Can you use the universal Fractran rule to compute 1+1?



208

The importance of Fractran

If you’re like me, you’re probably asking, what’s all this Fractran stuff got to do
with the 3n+1 problem? Let me try to explain. The universal Fractran rule is just a
compact way of writing a rule in our familiar format:

(a0n + b0)/d when n ≡ 0 (mod d)
(a1n + b1)/d when n ≡ 1 (mod d)

…
(ad–1n + bd–1)/d when n ≡ d – 1 (mod d)

In that way, it’s similar to the 3n+1 rule:

(1n + 0)/2 when n ≡ 0 (mod 2)
(3n + 1)/2 when n ≡ 1 (mod 2)

Conway’s universal rule isn’t the 3n+1 rule, but it’s a 3n+1 rule, or at least a
3n+1-type rule. Conway is saying that some 3n+1-type rules are full-blown com-
puters, and it’s useless to try to predict their behavior.

That’s how Conway’s mind works. He looks at the 3n+1 rule and thinks, “3n+1
is a kind of bird. It has two legs. A bird is a kind of vertebrate. Some vertebrates go
surfing and eat burritos. There are other kinds of birds, such as penguins. Penguins
don’t fly. So, not all birds fly.”

Is 3n+1 is a flightless bird? Does it eat burritos? I don’t know. It might.

Notes and references

Liesbeth de Mol describes a tag system that simulates 3n+1 in “Tag Systems and
Collatz-like Functions” (Theoretical Computer Science, vol. 390, no. 1, 2008). She
provides more historical background on simple computing devices in her disserta-
tion, “Tracing Unsolvability. A Historical, Philosophical and Mathematical Anal-
ysis with a special focus on Tag Systems” (Department of Philosophy, Ghent Uni-
versity, 2007).

Emre Yolcu, Scott Aaronson, and Marijn J. H. Heule describe their rewrite sys-
tem and computer-based attack on the 3n+1 problem in “An Automated Approach
to the Collatz Conjecture” (Proceedings of the International Conference on Auto-
mated Deduction, 2021).

The first cellular automaton for 3n+1 appeared in Ivan Korec’s paper, “The
3x+1 Problem, Generalized Pascal Triangles, and Cellular Automata” (Math. Slo-
vaca, 42, 1992).

The Farkas variant of the 3n+1 rule was introduced by Hershel Farkas in “Vari-
ants of the 3N+1 conjecture and multiplicative semigroups” (Geometry, Spectral
Theory, Groups, and Dynamics, 2005).
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John Conway popularized the original Collatz rule in an accessible article, “On
Unsettleable Arithmetical Problems” (American Mathematical Monthly, March,
2013), based on work he reported in “Unpredictable Iterations” (Proceedings of
the Number Theory Conference, Boulder, 1972).

TheMatthews-Watts conjecture appears in K. R.Matthews’ paper “Generalized
3x+1 Mappings: Markov Chains and Ergodic Theory,” in the collection The 3x+1
Problem: The Ultimate Challenge, edited by Jeffrey Lagarias. Edward G. Belaga
and Maurice Mignotte write extensively on the conjecture in “Walking Cautiously
into the Collatz Wilderness: Algorithmically, Number Theoretically, Randomly”
(Fourth Colloquium onMathematics and Computer Science, Discrete Mathematics
and Theoretical Computer Science, 2006).

Conway describes Fractran in “FRACTRAN: A Simple Universal Program-
ming Language for Arithmetic” (Open Problems in Communication and Compu-
tation, 1987, and in Lagarias’ edited volume.) You may also be interested in La-
garias’ tribute “Conway’s Work on Iteration: In memory of John Horton Conway
(1937–2020)” (The Mathematical Intelligencer 43, 2021).

Ken Monks’ paper is “3x+1 Minus the +,” Discret. Math. Theor. Comput. Sci.
5, 2002.

Many other papers expand on the computational power of simple, 3n+1-like
rules. For example:

• Stuart A. Kurtz and Janos Simon, “The Undecidability of the Generalized
Collatz Problem,” Theory and Applications of Models of Computation, 2007.

• Frantisek Kascak, “Small Universal One-State Linear Operator Algorithms,”
Proc. MFCS, 1992.

• Pascal Michel, “Busy Beaver Competition and Collatz-like Problems,” Arch.
Math. Logic, 32, 1993.

• Turlough Neary and Damien Woods, “Tag Systems and the Complexity of
Simple Programs,” Workshop on Cellular Automata and Discrete Complex
Systems, 2015.

The chapter’s opening quote1 (“Young man, in mathematics you…”) is from
Hungarian-born mathematician John von Neumann, inventor of game theory and
standard computer architecture, among many other things. I love it when famous
scientists joke around.

1John von Neumann responding to physicist Felix Smith’s doubts, according to Gary Zukav’s The
Dancing Wu Li Masters, 1979.
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Glossary

3n+1. Start with any positive whole number n. If n is odd, multiply it by 3 and add
1. If n is even, divide it by 2. Then repeat this procedure. For example: 5-16-8-
4-2-1. For most of this book, we use the equivalent revised 3n+1 rule, where “If
n is odd, multiply it by 3 and add 1, then immediately divide by 2.” For example:
5-8-4-2-1.

3n+1 conjecture. The hypothesis that all start numbers eventually reach 1 under
the 3n+1 rule. The conjecture has been verified for all start numbers up to 1020,
but there is no proof for all numbers. A counter-example would be a number that
fails to reach 1 by cycling or diverging to infinity.

3n+1 tree. An infinite tree in which each number points to its successor according
to the 3n+1 rule. Every number has one successor and one or two predecessors.

3n-1 problem. A variation of the 3n+1 problem with “-1” instead of “+1”. Some
non-trivial cycles for the 3n-1 problem are known: one starts with 5, and the other
starts with 17.

5n+1 problem. A variation of the 3n+1 problem in which odd numbers are multi-
plied by 5 instead of 3. Unlike the 3n+1 problem, 5n+1 trajectories trend upwards,
and it is conjectured that almost all numbers diverge to infinity.

abc-conjecture. If a, b, and c are co-prime, and a + b = c, then c is greater than
the product of the unique prime factors of a·b·c, raised to any power greater than 1,
with only finitely many exceptions.

Affine transformation. A function that transforms vectors into vectors while ad-
hering to certain restrictions. A sample affine transformation is y = Ax+B, where
A is a matrix and B is a constant vector.

Almost all. When mathematicians say “almost all” integers are composite, they
don’t mean 90% or 99% of them, as in colloquial English. They mean: “the per-
centage of numbers between 1 and x that are composite gets closer and closer to
100%, as x gets bigger and bigger.”

Almost no. The flip-side of almost all. “Almost no numbers are prime” means the
percentage of numbers between 1 and x that are prime gets closer and closer to 0%,
as x increases.

Aperiodic. A sequence (or necklace) is aperiodic if it can’t be chopped into identi-
cal pieces. The sequence 010001 is aperiodic, but 001001 is not, because it can be

239
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chopped into 001 and 001.

Application. In math-speak, a mathematical result has applications if it enables (or
eases) the creation of other mathematical results.

Bakuage prize. A prize worth 120 million Japanese yen, established by Bakuage
Co., Ltd., of Tokyo, Japan, for a successful resolution of the 3n+1 conjecture.

Basel problem. Posed by Pietro Mingoli and solved by Leonhard Euler, the Basel
problem asks for a closed-form expression for 1/12 + 1/22 + 1/32 + 1/42 + . . .

Beta. In this book, a member of a 3n+1 cycle takes the form beta/(2k – 3x).

Catalan’s conjecture. A conjecture made in 1844, and proven in 2002, which
states that xa – yb = 1 has only one whole-numbered solution (when a > 1 and
b > 1), namely 32 – 23 = 1.

Ceiling. The first whole number greater than or equal to a given real number. For
example, ceiling(2.5) = ⌈2.5⌉ = 3. It is always true that ⌈x⌉ ≥ x.

Cellular automaton. A rule for transforming one sequence into another. The au-
tomaton replaces each item of the current sequence with a new item, where the new
item depends only on the old item and its neighbors, as specified by the rule. 3n+1
trajectories can be mimicked by a simple one-dimensional cellular automaton. The
most famous two-dimensional automaton is Conway’s Game of Life.

Chaos. A word used in exasperation or amazement to describe how simple math-
ematical definitions (such as for prime numbers) lead to apparently pattern-less,
unpredictable behaviors.

Chinese remainder theorem. If n ≡ ai (mod mi), for i = 1 to k, there is a
whole-numbered solution n if m1, m2, . . . , mk are pairwise co-prime. Also, for
any solution n, there is another solution n + m1m2 . . .mk. The theorem is used to
solve linear Diophantine equations.

Church-Turing thesis. The proposal that any computable function can be imple-
mented by some Turing machine or equivalently powerful device.

Circuit. A type of cycle in which all odd terms precede all even terms. For the
5n+1 problem, the cycle 13-33-83-208-104-52-26-13 is a circuit.

Clock math. SeeModular arithmetic.

Collatz conjecture. See 3n+1 conjecture.

Composite. An integer that is not prime. See Prime.

Composition. A single function that replaces a pipeline of two functions. For
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example, if f(x) = x+1 and g(x) = x2, we can rewrite g(f(x)) as a single function
x2 + 2x + 1.

Congruent. Two whole numbers x and y are congruent (x ≡ y) mod p if they have
the same remainder when divided by p.

Conway map. See Original Collatz rule.

Co-prime. Two integers are co-prime if they share no common factor other than 1.
For example, 9 and 35 are co-prime, but 12 and 15 are not (both have 3 as a factor).
About 61% of (n, m) pairs are co-prime.

Contracting system. A 3n+1-type rule whose coefficients suggest that trajectories
will trend downwards. See also: Critical density, Matthews-Watts conjecture.

Counter-example. An example that demonstrates the falsity of a conjecture. For
example, we might conjecture that n2 –n+41 is always prime, because we observe
values like 41 (n = 1), 43 (n = 2), 47 (n = 3), … 1447 (n = 38), and so on. But
n = 41 is a counter-example, since 412 – 41 + 41 = 412, which is not prime.

Critical density. A 3n+1-type system with conditions of the form “(ain + bi)/d,
when n ≡ i (mod d),” for 0 ≤ i ≤ d – 1, has critical density (a0a1 . . . ad–1)/dd.
If the critical density is 1.2, then a start number n might be expected to reach about
1.2n after d “average” steps. If the critical density is smaller than one, it’s conjec-
tured that every start number reaches a cycle.

Cycle. A sequence of numbers that loops back on itself. There is only one known
3n+1 cycle among positive whole numbers, the trivial one: 1-2-1.

Diffie-Hellman key exchange. A cryptographic protocol that allows two partici-
pants to develop a shared secret key. They develop their shared secret by exchang-
ing messages encrypted with private keys using fast modular exponentiation. An
eavesdropper can only discover the shared secret by solving a discrete log problem
for which there is no known practical method.

Diophantine equation. An equation whose variables take on integer values. For
example, 2x + 5y = 100 has many solutions, including x = 25, y = 10. But
2x = 7 has no solutions.

Discrete log. The discrete log of x, using base b and modulus p, is the exponent y
such that by ≡ x (mod p). Unlike the popular real-valued logarithm, the variables
x, b, p, and y are all integers. The discrete log is very difficult to calculate for large
integers. Its apparent difficulty is the basis of many encryption algorithms.

Divergent number. In the context of the 3n+1 problem, a number that never en-
ters a cycle, but whose trajectory reaches ever-increasing heights, heading toward
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infinity. No divergent numbers are known, and there is no proof of their existence
or non-existence.

Elementary proof. A proof about some property of integers that employs addition
and multiplication, avoiding mathematical techniques such as real analysis, com-
plex or transcendental numbers, trigonometry, and so on.

Expanding system. A 3n+1-type rule whose coefficients suggest that trajectories
will trend upwards. See also: Critical density, Matthews-Watts conjecture.

Expected value. The predicted value of a variable, given different probabilities for
different values. For example, the expected value of a die roll is 1/6 · 1+1/6 · 2+
. . .+ 1/6 · 6 = 3.5. If you keep rolling, your rolls will average out to around 3.5.

Euclid sequence. Given an initial list of primes p1, p2, p3, . . . pm, we compute
n = p1 · p2 · p3 · . . . · pm + 1. If n is prime, we add it to the end of the list. If n
is composite, we add its smallest prime factor to the end of the list. If we start with
p1 = 2 and continually repeat this procedure, we get the Euclid sequence: 2, 3, 7,
43, 13, 53…

Euclidean algorithm. An efficient way to identify the greatest common divisor
(gcd) of two numbers. If the gcd equals 1, then the two numbers are co-prime.

Euler product. A rewrite of a sum over all whole numbers into a product over all
prime numbers. For example, 11 + 1

2 + 1
3 + 1

4 + . . . = 2
1 · 32 · 54 · 76 · . . . Both sides

of this equation diverge to infinity.

Farkas rule. Start with any number n. Let k be the remainder of n when divided by
6. If k is 0 or 2, replace n with n/2; if k is 3 or 5, replace n with (3n+1)/2; otherwise,
replace n with (n-1)/3. Repeat this procedure. It’s known that with the Farkas rule,
all numbers eventually reach 1.

Fermat’s Last Theorem. The equation xn+yn = zn has no integer solutions when
n > 2. This conjecture was unresolved for over 350 years before being proved true
by Andrew Wiles in 1995.

Fermat’s Little Theorem. For any prime p, and b indivisible by p, bp–1 ≡ 1 (mod
p). For example, 24 = 16 ≡ 1 (mod 5).

Floor. The first whole number less than or equal to a given real number. For ex-
ample, floor(2.5) = ⌊2.5⌋ = 2. It’s always true that ⌊x⌋ ≤ x.

Fractran. A programming language devised by John Conway. In Fractran, a pro-
gram is simply a list of fractions. The program takes an input number and iteratively
transforms it, creating a computational trajectory that is similar to a 3n+1 trajectory.

Fundamental theorem of arithmetic. Every whole number greater than 1 has a
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unique prime factorization.

Game of Life. A two-dimensional cellular automaton invented by John Conway.
The automaton controls the evolution of a grid of black and white squares. The
evolution follows a simple rule, but the results are intricate and complex.

Greatest common divisor. The greatest common divisor, gcd(x, y), is the largest
number that divides both x and y. For example, gcd(12, 15) = 3. In the case
where gcd(x, y) = 1, x and y are co-prime. Also called greatest common factor or
greatest common denominator.

Germain prime. A prime p such that 2p + 1 is also prime.

Glider. An oscillating pattern in the Game of Life that moves across the grid.

Glider gun. A Life object that emits gliders, usually at some regular frequency.

Halting problem. The problem of determining whether an arbitrarily-given pro-
gram will terminate or loop forever. Alan Turing showed that there is no algorithm
to solve the halting problem.

Harmonic numbers. A number with no prime factors except 2 and 3. Examples
include 6 (21 · 31), 16 (24), and 144 (24 · 32).

Harmonic series. The infinite list of fractions (1/1), (1/2), (1/3), (1/4), and so
on. Their sum diverges to infinity as the list grows.

Height. The height of n is the number of steps it takes n to reach 1, not counting
even numbers. For example, 13 has a height of 2, because the trajectory 13-20-10-
5-8-4-2-1 passes through odd terms 5 and 1.

Heuristic argument. Informal evidence for (or against) a mathematical conjecture.
For example, if all 3n+1 trajectories were to encounter even and odd terms with
equal frequency, then they would all eventually reach 1. As heuristic arguments
rest on unproven assumptions, they do not count as proofs.

High cycle. Considering all cycles of a certain length, the high cycle is the one
whose bottom member is greatest.

Infinite sum. The result of adding up an infinitely-long list of numbers. Even
though the list is infinite, the sum may be finite. For example, 1/2 + 1/4 + 1/8 +
1/16 + . . . gets closer and closer to 1, but never exceeds it. So, the sum converges
to 1. Other infinite sums diverge. For example, 1+1+1+ . . . diverges to infinity,
as does 1/2 + 1/3 + 1/4 + 1/5 + . . .

Intel Pentium-chip bug. A hardware bug that caused a particular computer chip
to make occasional arithmetic errors. The bug was discovered by a mathematician
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doing calculations with prime numbers.

Irrational number. A number that cannot be written as the ratio of two integers.
For example, there are no integers p and q such that

√
2 = p/q, even though a ratio

like 3363/2378 comes close.

k. In this book, the length of a 3n+1 cycle.

Kook. In surfing lingo, a novice surfer.

Lattice points. Points on graph paper where lines intersect. Lattice points have
integer coordinates, such as (3, 4).

Life. See Game of Life.

Linear function.. A function that can be expressed in the form y = mx + b.

Linear Diophantine equation. An equation such as 5b–2c = 14, where a solution
consists of whole-numbered values for b and c.

Linear Diophantine inequality. An inequality such as 5b + 2c ≤ 14, where a
solution consists of whole-numbered values for b and c.

Log. See Logarithm.

Logarithm. The logarithm of x, using base b, is denoted y = logb(x). It is the y
such that by = x.

Log base 2. log2(x) is the y such that 2y = x. As an example, log2(32) = 5.

Log base 10. log10(x) is the y such that 10y = x. As an example, log10(1000) = 3.

Lower bound. A function whose values always stay below those of another func-
tion. For example, x – 3 is a lower bound for x2.

Lyndon word. An aperiodic necklace.

Mathematical induction. A technique for proving that some property holds for
every member of an infinite set. The base step handles the first member of the set,
while the inductive step shows that if the property holds for the ith element of the
set, then it also holds for the (i+1)-st element of the set.

Matthews-Watts conjecture. A more-general variation of the 3n+1 conjecture.
Matthews and Watts classify multi-way rules as “expanding” or “contracting,” de-
pending on their coefficients. It predicts that for contracting rules (including 3n+1),
all numbers eventually reach a cycle, while for expanding rules (including 5n+1),
almost all numbers diverge to infinity. See also: Multi-way rule.

Modular arithmetic. Arithmetic over a finite subset of whole numbers, sometimes
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called “clock math.” In the clock analogy, 8 hours past 6 o’clock is not 8+ 6 = 14
o’clock, but rather 2 o’clock, because 8 + 6 ≡ 2 (mod 12). In general, x ≡ y
(mod p) means that x and y have the same remainder when divided by p. Possible
remainders run from 0 to p – 1, and p is called the modulus.

Modular exponentiation. The process of calculating ba mod p, that is, the remain-
der of ba when divided by p.

Modulus. SeeModular arithmetic.

Multiplicative order. The multiplicative order of x modulo p is the smallest whole
number b such that xb ≡ 1 (mod p).

Multi-way rule. The 3n+1 rule has two branches, one for odd n, and one for even
n. A multi-way rule has three or more branches. For example, it may branch on
whether the remainder of n divided by 3 is 0, 1 or 2.

Natural log. ln(x) = loge(x) = the y such that ey = x, where e is a transcendental
number with value 2.718… For large x, loge(x) is roughly 2.3 times the number of
decimal digits of x.

Necklace. A sequence that is considered unchanged by rotation. For example, a
necklace consisting of three contiguous 1s and two contiguous 0s can be written
(equivalently) as 11100, 11001, 10011, 00111, or 01110.

Non-trivial cycle. Any cycle not containing the terms 0 or 1.

Normal number. A number in which all subsequences of any length n occur with
equal frequency. Numbers like π are believed to be normal, though this has not
been proven.

Number. An object whose definition is beyond the scope of this book.

Odd Goldbach conjecture. The conjecture that every odd number greater than 5
is the sum of three primes.

Operation sequence. A linear arrangement of the operations 3n+1
2 and n

2 . For
example: 3n+1

2 , 3n+1
2 , n

2 ,
n
2 ,

n
2 . For any operation sequence, there is a unique

rational number that loops back on itself.

On-Line Encyclopedia of Integer Sequences. A vast, crowd-sourced, curated
collection of integer sequences available for browsing and search at oeis.org.

Order. SeeMultiplicative order.

Original Collatz rule. Start with any number n. Divide it by 3. If there is no
remainder, replace n with 2n/3. If the remainder is 1, replace n with (4n-1)/3. If
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the remainder is 2, replace n with (4n+1)/3. Each number n has a unique successor
and a unique predecessor.

Prime. A positive integer that is only divisible by 1 and itself. For example, 23 is
prime.

Prime factors. The prime factors of n are those primes whose product is n. For
example, 63 = 3 · 3 · 7. Every number has a unique prime factorization.

Prime number theorem. As x tends to infinity, the number of primes less than x
gets closer and closer to x/logex, where logex is the natural log of x.

Primorial. The nth primorial is the product of the first n primes. The first few
primorials are 2, 6, 30, 210, 2310, 30030, …

Proof by cases. A proof technique that breaks a complex problem down into an
exhaustive set of cases, then handles those cases one by one. To prove a fact about
all whole numbers, we might first prove it for all odd numbers (using one method),
then prove it for all even numbers (using another method).

Provable. See Unprovable.

qn+1 problem. Start with any whole number n. If n is even, replace it by n/2. If n
is odd, replace it by (qn+1)/2. Then repeat.

Rational number. A number that can be written as the ratio of two integers, for
example, 3.8 = 19/5.

Real number. Very roughly speaking, some specific distance down the number
line, such as 7, or 19/5, or π, or 3.333…

Reduced fraction. A fraction whose numerator and denominator cannot be re-
duced to smaller values, because they are co-prime. For example, 42/20 is not a
reduced fraction, but 21/10 is.

Reductio ad absurdum. A technique for proving a proposition by first assuming
its opposite. If this leads us to a contradiction or absurd conclusion, then we know
the proposition’s opposite is false, so the proposition itself must be true.

Relatively prime. See Co-prime.

Repeated squaring. A fast method for modular exponentiation. When computing
something like 2b (mod p), for very large b, repeated squaring avoids having to
expand 2b.

Rewrite system. A set of rules for transforming one sequence into another. The
system selects a rule that matches some portion of the current sequence and replaces
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the matched portion with new items. It then repeats this procedure on the resulting
sequence. If no rules match, the system stops.

Riemann Hypothesis. An unproven conjecture about the values of the Riemann
zeta function, with many potential applications in number theory.

Riemann zeta function. The zeta function applied to complex numbers.

Rule 110. A simple cellular automaton discovered by Stephen Wolfram, proved by
Matthew Cook to be a universal computer.

Squarefree. A number is squarefree if it doesn’t have any repeated prime factors.

Spoiler factor. In this book, a factor of q, not shared by p, that proves p/q is not a
whole number.

State. A snapshot of a computation that contains all of the information required for
the computation to continue.

Stirling’s approximation. A useful approximation to the factorial function, n! =
1 · 2 · . . . · n ≈ (n/e)n

√
2πn, where e is the base of the natural logarithm.

Structure. A pattern or regularity in how numbers behave.

Tag system. A set of rules for transforming one sequence into another. A tag
system removes items from the left of the sequence, and adds new items to the
right. It then repeats this procedure on the resulting sequence. If the sequence
becomes short enough, the system stops. Lisbeth de Mol discovered a tag system
that computes 3n+1 trajectories.

Term. A member of a 3n+1 trajectory.

Threeven. Divisible by 3. Come on, English, you can do it!

Total stopping time. The total stopping time of n is the number of 3n+1 steps it
takes for n to reach 1. If n never reaches 1, its total stopping time is infinite. For
example, the trajectory of 5 is 5-8-4-2-1, so 5 has a stopping time of 4.

Tower of Hanoi puzzle. A puzzle involving disks of various sizes that slot onto
three poles. The goal is to move a pyramid of disks from one pole to another,
without ever placing a larger disk on top of a smaller one.

Trajectory. A sequence of numbers that follows the 3n+1 rule. For example, 40-
20-10-5-8-4-2-1.

Transcendental number. A number that is not the solution to any algebraic equa-
tion.

√
2 is not transcendental, because it is a solution to x2 = 1. Transcendental
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numbers include π, e, and log2(3).

Trivial cycle. In the 3n+1 problem, the trivial cycle is 1-2-1-2-1 …

Twin primes. A pair of prime numbers separated by a distance of two, such as 17
and 19.

Twin prime conjecture. The hypothesis that there are an infinite number of twin
primes, an unsolved question in number theory.

Turingmachine. Amathematical model of a simple computer that reads andwrites
symbols on an infinite strip of paper. Anything your laptop can compute, a Turing
machine can also compute, albeit more slowly.

Universal computer. A system with problem-solving ability equal to any other
computer. The system may not be as fast, but it will convert the same inputs into
the same outputs.

Unprovable. Some mathematical assertions are true but unprovable, a counter-
intuitive fact first discovered by Kurt Gödel in 1931. Therefore, even if the 3n+1
conjecture is true, there be no way to prove it.

Upper bound. A function whose values always exceed those of another function.
For example, x2 is an upper bound for x – 3.

Whole number. A whole number is one of these: 0, 1, 2, 3, 4, …. Expanding this
list to include negatives, we get the integers.

Wieferich prime. A prime number p whose square p2 divides 2p–1 – 1. Or, equiv-
alently, a prime p with ord2(p) ≡ ord2(p2). There are only two known Wieferich
primes.

Wondrous number. In Douglas Hofstadter’s book Gödel, Escher, Bach: An Eter-
nal Golden Braid, a wondrous number is any number that eventually reaches 1
via the 3n+1 rule. The 3n+1 conjecture posits that all positive whole numbers are
wondrous.

x. In this book, the number of odd terms (or up-moves) in a 3n+1 cycle.

Zeta function. Introduced by Euler, the function ζ(s) = (1/1s)+(1/2s)+(1/3s)+
(1/4s) + . . . is useful for counting prime numbers and estimating the chance that
two numbers are co-prime, among other applications.




